
An Overview of SVX4 Testing

John Freeman, 4/2/03



The Htwish Test Program

• We’re currently working with the Htwish
program, originally written by Igor
Volobouev to test SVX3 hybrids

• Htwish has been modified to provide rapid,
comprehensive tests of SVX4 hybrids

• But our job is not yet complete…



Where We’re Going

• We want to expand Htwish’s test suite to
make the program even more
comprehensive

• In this talk, I’ll discuss current Htwish tests,
as well as some we may add (primarily
taken from wafer testing)





First Things First: Currents

• Testing currents involves several
measurements of both the digital and analog
currents during the testing procedure

• If any shorts are discovered, the chip (and
hybrid’s) failure is automatic



Line Tests

• Serial line test: Initialize the hybrid with
0’s, then 1’s, then 0’s again. Make sure we
read out what we expect on the priority-out
line– there should be no bits stuck in the
shift register

• Neighbor logic: Make sure top and bottom
neighbor behave as expected during digitize



Pipeline Pedestal Tests

• Very fundamental– simply examine ADC
value of non-injected channels

• Htwish looks at all 128*46 pipeline
capacitors on a chip => very thorough
testing!

• Examine pedestal uniformity across a chip,
noise, look for bow structures, etc.







Pedestal Tests, Cont’d

• Adjust ramp pedestal initialization bits over
all 16 possible values

• For each ramp value, find the chip’s median
pedestal value, and the residuals of the other
channels

• This allows us to examine the effect of the
initial ramp setting on pedestal uniformity



Multiple Events

• Use four closely spaced L1A triggers to see
if chip can properly store four events in its
pipeline

• Also of interest is how the pedestal structure
varies over these four events



Gain Tests

• Read out each channel at different values of
charge injection, and calculate the ADC
count / voltage slope (= “gain”)

• Gain similar to pedestal in that every
pipeline cap has its own gain value => some
analysis similar to pedestal analysis

• Additionally: study of gain linearity /
fluctuations in specific pipeline capacitors



Dynamic Common Mode
Suppression

• Idea is to see how many channels on a chip
need to be injected before chip is fooled
into subtracting off the injected, rather than
the pedestal, channels

• We have doubts as to the “fairness” of this
test





Sparsification Tests

• Most fundamental: inject charge into
specific channels, and make sure you read
out the channels you expect (with and w/out
read-neighbor set)



Other Sparsification Tests

• Sparsification S-Curve : Increase readout
threshold from well below to well above
pedestal value; then fit S-Curve to the # of
channels read out vs. the readout threshold

• Sparsification effect on readout value– look
at the value of injected channels both with
and without read-all flag set



Preamp Risetime

• This test examines the preamp speed given
different preamp bandwidths

• We don’t access the analog output of the
preamp, but vary the time of charge
injection within an FE bucket





Pipeline Delay

• With the L1A trigger in a fixed bucket, step
the trigger latency over a large range of
values (42), and check cell ID each time

• This is done for every cell in the pipeline –
exhaustive check of the pipeline pointer!



ADC Latch

• Test to insure that no bits are stuck in our
ADC latches

• Use different settings of counter modulo
(some of which will be complementary in
Gray code)

• Make sure counter modulo value always
gets read out in every channel



Deadtimeless Operation

• Examine the SVX4’s deadtimeless abilities
by initiating a readout sequence with a
“dummy” trigger, and then triggering on a
specific bucket during readout

• Buckets looked at by Htwish cover all of
digitize, as well as beginning and end of
readout



Deadtimeless Operation (cont’d)

• Test is performed in three modes: “regular”,
“charge-injected”, and “sparsified”

• In summary, we re-test many aspects of the
chip, but with the deadtimeless twist added



Discussion

• We currently use many tests on our hybrids.
But we can do more, and the question
becomes:

Which tests can you think of that we should add?


